静かなる名辞

pythonとプログラミングのこと

2019/03/22:TechAcademyがteratailの質問・回答を盗用していた件
2019/03/26:TechAcademy盗用事件 公式発表と深まる疑念


特徴選択

ランダムフォレストを使うなら変数選択はしなくてもいいのか?

はじめに 表題の通りの話をたまに聞きます。「ランダムフォレストは内部で変数選択を行う。なので変数選択は必要ない」という主張です。 しかし個人的には、それはあくまでも 他の手法*1と比べれば変数選択しなかった場合の悪影響が少ない ということであっ…

【python】scikit-learnで大規模疎行列を扱うときのTips

はじめに 自然言語処理などで大規模疎行列を扱うことがあります。一昔前はNLPといえばこれでした(最近は低次元密行列で表現することのほうが多いですが)。 疎行列はその特性をうまく生かして扱うとパフォーマンス上のメリットが得られる反面、うかつにdens…

sklearnの変数選択は疎行列型(csr_matrix)でやると速いっぽいよ

はじめに 疎行列はメモリ消費こそ少ないものの、scikit-learnで使うと内部でnumpy配列に変換されたりしてあまり恩恵を受けられないことが多いです。 でも、変数選択に使うときはどうやら効くっぽいです。 関連記事 scikit learnのモデルに疎行列(csr_matrix…

【python】sklearnのRFE(Recursive Feature Elimination)を使ってみる

はじめに RFE(Recursive Feature Elimination)というものがあることを知ったので試してみたいと思いました。 RFEは特徴選択の手法で、その名の通り再帰的にモデルを再構築しながら特徴を選択するという特色があります。sklearn.feature_selection.RFE — scik…

【python】sklearnのVarianceThresholdを試してみる

はじめに VarianceThresholdは名前の通り、分散がしきい値以下の特徴量を捨てます。sklearn.feature_selection.VarianceThreshold — scikit-learn 0.20.2 documentation これといってすごいところはありませんが、気楽に使えそうなので試してみました。 目次…

【python】SelectKBestのscore_funcによる速度差を比較

SelectKBestはsklearnの簡単に特徴選択ができるクラスです。ざっくりと特徴選択したいときに、とても便利です。sklearn.feature_selection.SelectKBest — scikit-learn 0.20.1 documentation ところで、このSelectKBestにはscore_funcというパラメータを指定…

【python】ランダムフォレストの特徴重要度で特徴選択を試す

最終更新:2018-04-02 はじめに RandomForestでは特徴重要度を計算できる、というのは結構有名な話です。では、これはどの程度実用的なのでしょうか? pythonのsklearnを使い、簡単に実験して確かめてみました。 目次 はじめに 実験条件 実験 実装 気を配っ…